Ensemble Neural Network Model for Predicting the Energy Consumption of a Milling Machine

نویسندگان

  • Ronay Ak
  • Sudarsan Rachuri
چکیده

Accurate prediction of the energy consumption is critical for energy-efficient production systems. However, the majority of existing prediction models aim at providing only point predictions and can be affected by uncertainties in the model parameters and input data. In this paper, a prediction model that generates prediction intervals (PIs) for estimating energy consumption of a milling machine is proposed. PIs are used to provide information on the confidence in the prediction by accounting for the uncertainty in both the model parameters and the noise in the input variables. An ensemble model of neural networks (NNs) is used to estimate PIs. A k-nearest-neighbors (k-nn) approach is applied to identify similar patterns between training and testing sets to increase the accuracy of the results by using local information from the closest patterns of the training sets. Finally, a case study that uses a dataset obtained by machining 18 parts through face-milling, contouring, slotting and pocketing, spiraling, and drilling operations is presented. Of these six operations, the case study focuses on face milling to demonstrate the effectiveness of the proposed energy prediction model.  Corresponding author. Tel: +1-301-975-8655. Address: Systems Integration Division, NIST, 20899, MD, USA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks

Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 ca...

متن کامل

Prediction of Energy Consumption in the First Line of Tehran Metro: GMDH Neural Network Approach

Today, energy and its consumption are the main strategic plan of organizations and also the development of urban transport systems by considering a variety of economic, scientific, industrial, climate and growing urbanization is essential. Analysis of past trends in energy is the key to predict future trends, with regard to the rate of development of metro, for planning and future-oriented macr...

متن کامل

Performance evaluation of gang saw using hybrid ANFIS-DE and hybrid ANFIS-PSO algorithms

One of the most significant and effective criteria in the process of cutting dimensional rocks using the gang saw is the maximum energy consumption rate of the machine, and its accurate prediction and estimation can help designers and owners of this industry to achieve an optimal and economic process. In the present research work, it is attempted to study and provide models for predicting the m...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Hypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method

Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015